Objectives

The objectives of this research project include:

- Understanding classical MDS on finitely many points of the circle
- Defining a notion of MDS on infinite metric measure spaces
- Studying its optimal properties and goodness of fit
- Testing convergence of MDS on metric measure spaces

Introduction

Multidimensional scaling (MDS) is concerned with the problem of constructing a configuration of \(n \) points in Euclidean space using information about the dissimilarities between the objects. The distances need not be based on Euclidean distances; they can represent many types of dissimilarities between objects. The goal of MDS is to map the objects \(x_1, \ldots, x_n \) to configuration or embedding points \(f(x_1), \ldots, f(x_n) \) in \(\mathbb{R}^m \) in such a way that the given dissimilarities \(d(x_i, x_j) \) are well-approximated by the distances \(||f(x_i) - f(x_j)||_2 \) [1].

MDS of evenly spaced points on a Circle

Let \((S^1, d) \) be the unit circle, equipped with the geodesic metric \(d \). Figure 1 shows the MDS embedding in \(\mathbb{R}^3 \) of 1000 evenly spaced points on \(S^1 \).

Proposition. The Classical MDS embedding in \(\mathbb{R}^m \) of \(n \) evenly spaced points on \(S^1 \) lies, up to a rigid motion of \(\mathbb{R}^m \), on the curve
\[
\gamma_n: S^1 \to \mathbb{R}^m, \quad \gamma_n(e^{i\theta}) = (a_1(n) \cos(\theta), a_1(n) \sin(\theta), a_2(n) \cos(3\theta), a_2(n) \sin(3\theta), \ldots, a_n(n) \cos(n\theta), a_n(n) \sin(n\theta)) \in \mathbb{R}^m,
\]
where \(\lim_{n \to \infty} a_j(n) = \frac{\sqrt{2}}{j} \) (with \(j \) odd).

MDS on Infinite Metric Measure Spaces

Multidimensional scaling (MDS) is a popular technique for mapping a finite metric space \((X, d_X)\) into a low-dimensional Euclidean space \(\mathbb{R}^m \) in a way that best preserves pairwise distances. We are working on constructing an extension of MDS to infinite metric measure spaces \((X, d_X, \mu)\).

Suppose we start with a measure metric space \((X, d_X, \mu)\), where \(d_X \) is a real-valued \(L^2 \)-function on \(X \times X \) with respect to the measure \(\mu \). We hope that the metric \(d_X \) can be approximately represented by a Euclidean metric \(d_{\hat{X}} : \hat{X} \times \hat{X} \to \mathbb{R} \) on a space \(\hat{X} \) in a Euclidean space \(\mathbb{R}^m \), perhaps of low dimension (often \(m = 2 \) or \(3 \)).

Goal: Convergence of MDS

Let \(X_n = ((X_n, d_{X_n}, \mu_n))_{n \in \mathbb{N}} \) be a sequence of metric measure spaces and let \(\hat{X}_n = ((\hat{X}_n, d_{\hat{X}_n}, \mu_n))_{n \in \mathbb{N}} \) be a sequence of the corresponding MDS embeddings of \(X_n \) such that \(d_{\hat{X}_n} \) is Euclidean distance on \(\hat{X}_n \subseteq \mathbb{R}^m \).

There are various notions of convergence of \(X_n \) to \(X = (X, d_X, \mu_X) \) as \(n \to \infty \), one of which can be defined using the Gromov-Wasserstein distance \(D_p \) [2]. We hope to show that if we have convergence \(X_n \overset{D_p}{\to} X \), then we also have convergence \(\hat{X}_n \overset{D_p}{\to} \hat{X} \).

In the particular case when the \(X_n \) are all finite with the same number of points, this convergence follows from [3].

Motivating questions

- If a finite sample \(X_n \subseteq X \) converges to \(X \) as we sample more points, then in what sense do the MDS embeddings of these finite samples converge to the MDS embedding of \(X \)?
- More generally, if a sequence of metric measure spaces converges to \(X \), then in what sense do the MDS embeddings of these spaces converge to the MDS embedding of \(X \)?

References

Contact Information

- Web: https://larakassab.weebly.com
- Email: lara.kassab@colorado.edu